题目内容
【题目】如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
【答案】(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
【解析】
(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
证明,得到,,
根据为等腰直角三角形,得到,
再根据,即可解出答案.
(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
在DA上截取一点H,使得CD=DH=1,则易证,
由即可得出答案.
解:(1)如图1中,
由题意:,
∴AE=CD,BE=BD,
∴CD+AD=AD+AE=DE,
∵是等腰直角三角形,
∴DE=BD,
∴DC+AD=BD,
故答案为.
(2).
证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.
∵,
∴,
∴.
∵,,,
∴,
∴.又∵,
∴,
∴,,
∴为等腰直角三角形,.
∵,
∴.
(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
∴.
【题目】某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:
项目 | 第一年的工资(万元) | 一年后的计算方法 |
基础工资 | 1 | 每年的增长率相同 |
住房补贴 | 0.04 | 每年增加0.04 |
医疗费 | 0.1384 | 固定不变 |
(1)设基础工资每年增长率为x,用含x的代数式表示第三年的基础工资为 万元;
(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18 %,问基础工资每年的增长率是多少?