题目内容
【题目】如图, 分别平分的外角、内角、外角.以下结论: ①;②;③平分;④; ⑤其中正确的结论是_______.
【答案】①②④⑤
【解析】试题分析:(1)由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等两直线平行得出结论正确;(2)由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出结论∠ACB=2∠ADB;(3)如果BD平分∠ADC,则四边形ABCD是菱形,只有在△ABC是正三角形时才有BD平分∠ADC故③错误;(4)在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出结论∠ADC=90°-∠ABD;(5))由∠BAC+∠ABC=∠ACF,得出∠BAC+∠ABC=∠ACF,再与∠BDC+∠DBC=∠ACF相结合,得出∠BAC=∠BDC,即∠BDC=∠BAC.
试题解析: (1)∵AD平分△ABC的外角∠EAC
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确。
(2)由(1)可知AD∥BC
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正确;
(3) 如果BD平分∠ADC,则四边形ABCD是平行四边形,
∵∠ABD=∠ADB,
∴AB=AD,
∴四边形ABCD是菱形,
∴只有在△ABC是正三角形时才有BD平分∠ADC
故③错误;
(4) 在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°
∴∠ADC+∠ABD=90°
∴∠ADC=90°∠ABD,
故④正确;
(5)∵∠BAC+∠ABC=∠ACF,
∴∠BAC+∠ABC=∠ACF,
∵∠BDC+∠DBC=∠ACF,
∴∠BAC+∠ABC=∠BDC+∠DBC,
∵∠DBC=∠ABC,
∴∠BAC=∠BDC,即∠BDC=img src="http://thumb.1010pic.com/questionBank/Upload/2017/12/28/23/3361039e/SYS201712282320308096520713_DA/SYS201712282320308096520713_DA.015.png" width="16" height="41" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />∠BAC.
故⑤正确。
故答案为:①②④⑤。