题目内容
【题目】探索:如图1,在中,,.求证:;
发现:直角三角形中,如果有一个锐角等于,那么这个角所对的直角边等于斜边的_______.
应用:如图2,在中,,,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点运动的时间是秒().过点作于点,连接,.
(1)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由;
(2)当为何值时,为直角三角形?请说明理由.
【答案】探索:;发现:一半;应用:(1)能,当秒时,四边形为菱形;(2)当t=7.5或12秒时,△DEF为直角三角形
【解析】
探索:先判断出BD=AC=AD,进而判断出△ABD是等边三角形,即可得出结论;
发现:直接由发现得出结论;
应用:(1)能.首先证明四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60-4t=2t,解方程即可解决问题;
(2)分三种情形讨论①当∠DEF=90°时,②当∠EDF=90°时.③若∠EFD=90°,分别求解即可.
探索:作边上的中线,
∵在中,,
∴,,
∴是等边三角形
∴;
发现:由探索知,直角三角形中,如果有一个锐角等于30°,那么这个角所对的直角边等于斜边的一半,
故答案为:一半;
应用:(1)能,理由如下:
在中,,,,
∴,
又∵,
∴,
∵,,
∴,
又∵,
∴四边形为平行四边形.
当时,四边形为菱形,即,解得,
∴当秒时,四边形为菱形;
(2)①当时,由(1)知四边形为平行四边形,
∴,
∴.
∵,
∴,
∴,
又,
∴,解得;
②当时,四边形为矩形,
在中,则,
∴,即,
解得;
③若,则与重合,与重合,此种情况不存在.
综上所述,当t=7.5或12秒时,△DEF为直角三角形.
练习册系列答案
相关题目