题目内容

若a、b为不相等的实数,且a2-3a+1=0,b2-3b+1=0,则
1
1+a2
+
1
1+b2
=______.
∵a、b为不相等的实数,且a2-3a+1=0,b2-3b+1=0,
∴a、b是方程x2-3x+1=0的两个根,
∴a+b=3,ab=1,
∴a2+b2=(a+b)2-2ab=32-2×1=7,
1
1+a2
+
1
1+b2
=
=
1+b2+1+a2
(1+a2)(1+b2)

=
2+a2+b2
1+b2+a2+(ab)2

=
2+7
1+7+12

=1,
故答案为:1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网