题目内容
【题目】如图,已知正方形ABCD的顶点,,,规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线的交点M的坐标为( )
A.B.C.D.
【答案】C
【解析】
由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2019次这样的变换得到点M的坐标.
解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).
∴点M的坐标为(2,2),
根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),
第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),
第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),
∴连续经过2019次变换后,点M的坐标变为(-2017,-2).
故选:C.
练习册系列答案
相关题目