题目内容
【题目】如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.
(1)求证:CD是⊙O的切线;
(2)若AD=1,OA=2,求AC的值.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;
(2)证明△ACB∽△ADC,得出AC2=ADAB,即可得出结果.
试题解析:(1)证明:连接OC,如图所示:
∵AB是⊙O直径,
∴∠ACB=90°,
∵OB=OC,
∴∠B=∠BCO,
又∵∠ACD=∠B,
∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∵AD⊥CD,
∴∠ADC=∠ACB=90°,
又∵∠ACD=∠B,
∴△ACB∽△ADC,
∴AC2=ADAB=1×4=4,
∴AC=2.
练习册系列答案
相关题目