题目内容
【题目】如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.
请你认真完成下面的填空.
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∴AB∥EF ( )
∴∠B+∠F=180°( ).
【答案】内错角相等,两直线平行;内错角相等,两直线平行;平行于同一条直线的两条直线平行;两直线平行,同旁内角互补.
【解析】
观察图形,由∠B=∠BGD,根据内错角相等,两直线平行,即可证得AB∥CD,又由∠DGF=∠F,根据内错角相等,两直线平行,可证得CD∥EF,由平行于同一条直线的两条直线平行,则得AB∥EF,再根据两直线平行 同旁内角互补,易得∠B+∠F=180°.
证明:∵∠B=∠BGD(已知),
∴AB∥CD(内错角相等,两直线平行),
∵∠DGF=∠F(已知),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF(平行于同一条直线的两条直线平行)
∴∠B+∠F=180°(两直线平行,同旁内角互补);
故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行于同一条直线的两条直线平行;两直线平行,同旁内角互补.
练习册系列答案
相关题目