题目内容

【题目】小明在某次作业中得到如下结果: sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈( 2+( 2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.

【答案】解:(Ⅰ)当α=30°时, sin2α+sin2(90°﹣α)
=sin230°+sin260°
=( 2+( 2
= +
=1;
(Ⅱ)小明的猜想成立,证明如下:
如图,在△ABC中,∠C=90°,

设∠A=α,则∠B=90°﹣α,
∴sin2α+sin2(90°﹣α)
=( 2+( 2
=
=
=1.
【解析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.
【考点精析】本题主要考查了互余两角的三角函数关系和特殊角的三角函数值的相关知识点,需要掌握互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A);分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网