题目内容
【题目】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC= ,则四边形MABN的面积是( )
A.
B.
C.
D.
【答案】C
【解析】解:连接CD,交MN于E, ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE,
∴CD=2CE,
∵MN∥AB,
∴CD⊥AB,
∴△CMN∽△CAB,
∴ ,
∵在△CMN中,∠C=90°,MC=6,NC= ,
∴S△CMN= CMCN= ×6×2 =6 ,
∴S△CAB=4S△CMN=4×6 =24 ,
∴S四边形MABN=S△CAB﹣S△CMN=24 ﹣6 =18 .
故选C.
首先连接CD,交MN于E,由将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,即可得MN⊥CD,且CE=DE,又由MN∥AB,易得△CMN∽△CAB,根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比,即可得 ,又由MC=6,NC= ,即可求得四边形MABN的面积.
练习册系列答案
相关题目