题目内容
【题目】如图,一次函数y=x+1的图象交x轴于点E、交反比例函数 的图象于点F(点F在第一象限),过线段EF上异于E,F的动点A作x轴的平行线交 的图象于点B,过点A,B作x轴的垂线段,垂足分别是点D,C,则矩形ABCD的面积最大值为 .
【答案】
【解析】解:设A(a,a+1),则B( ,a+1),
∴AB= ﹣a,AD=a+1,
∴S矩形ABCD=(a+1)( ﹣a)=2﹣a(a+1)=﹣(a+ )2+ ,
∴当a=﹣ 时,矩形ABCD的面积最大值为 ,
所以答案是: .
【考点精析】根据题目的已知条件,利用二次函数的最值的相关知识可以得到问题的答案,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价为120元、170元的A,B两种型号的电风扇,如表所示是近2周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 6 | 5 | 2200元 |
第二周 | 4 | 10 | 3200元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市再采购这两种型号的电风扇共130台,并且全部销售完,该超市能否实现这两批的总利润为8010元的目标?若能,请给出相应的采购方案;若不能,请说明理由.