题目内容

【题目】如图,抛物线y=ax2+bx+c(a≠0)的开口向上,与x轴交点的横坐标分别为﹣1、3,则下列说法错误的是(
A.对称轴是直线x=1
B.方程ax2+bx+c=0的解是x1=﹣1,x2=3
C.当x<1,y随x的增大而增大
D.当﹣1<x<3时,y<0

【答案】C
【解析】解:∵抛物线与x轴交点的横坐标分别为﹣1、3, ∴对称轴是直线x= =1,方程ax2+bx+c=0的解是x1=﹣1,x2=3,故A、B正确;
∵抛物线y=ax2+bx+c(a≠0)的开口向上,
∴当x<1,y随x的增大而减小,故C错误;
∵当﹣1<x<3时,抛物线在x轴的下面,
∴y<0,故D正确,
故选C.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网