题目内容

【题目】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)
(2)连接BD,求证:DE=CD.

【答案】
(1)解:如图,DE为所作;


(2)证明:如图,

∵DE垂直平分AB,

∴DA=DB,

∴∠DBA=∠A=30°,

∵∠ABC=90°﹣∠A=60°,

∴∠CBD=30°,

即BD平分∠ABC,

而DE⊥AB,DC⊥BC,

∴DE=DC.


【解析】(1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分AB;(2)先利用线段垂直平分线的性质得到DA=DB,则∠DBA=∠A=30°,再证明BD平分∠ABC,然后根据角平分线的性质定理可得到结论.
【考点精析】掌握线段垂直平分线的性质和含30度角的直角三角形是解答本题的根本,需要知道垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网