题目内容
【题目】已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.
【答案】12.
【解析】
如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.
如图,
∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),
∴﹣6=2×4+2b﹣6,
解得:b=﹣4,
∴抛物线的表达式为:y=2x2﹣4x﹣6;
∴点C(0,﹣6);
令y=0,则2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3,
∴点A、B的坐标分别为:(﹣1,0)、(3,0),
∴AB=4,OC=6,
∴△ABC的面积=×AB×OC=×4×6=12.
练习册系列答案
相关题目