题目内容
【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D-d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(1,0)的距离跨度______________;
B(-, )的距离跨度____________;
C(-3,-2)的距离跨度____________;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是______________.
(2)如图2,在平面直角坐标系xOy中,图形G2为以D(-1,0)为圆心,2为半径的圆,直线y=k(x-1)上存在到G2的距离跨度为2的点,求k的取值范围.
(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,求出圆心E的横坐标xE的取值范围.
【答案】(1)①2;2,4;②以O为圆心,半径为1的圆;(2)-≤k≤;(3)-1≤xE≤2 .
【解析】试题分析:(1)①先根据跨度的定义先确定出点到圆的最小距离d和最大距离D,即可得出跨度;
②分点在圆内和圆外两种情况同①的方法计算,判定得出结论;
(2)先判断出存在的点P必在圆O内,设出点P的坐标,利用点P到圆心O的距离的2倍是点P到圆的距离跨度,建立方程,由于存在距离跨度是2的点,此方程有解即可得出k的范围.
(3)同(2)方法判断出存在的点P在圆C内部,由于在射线OA上存在距离跨度是2的点,同(2)的方法建立方程,用一元二次方程根与系数的关系和根的判别式即可确定出范围.
试题解析:
(1)①∵图形G1为以O为圆心,2为半径的圆,
∴直径为4,
∵A(1,0),OA=1,
∴点A到⊙O的最小距离d=1,
点A到⊙O的最大距离D=3,
∴点A到图形G1的距离跨度R=D-d=3-1=2;
∵B
∴点B到⊙O的最小距离d=BG=OG-OB=1,
点B到⊙O的最大距离D=BF=FO+OB=2+1=3,
∴点B到图形G1的距离跨度R=D-d=3-1=2;
∵C(-3,-2),
∴OC=
∴点C到⊙O的最小距离d=CD=OC-OD=-2.
点C到⊙O的最大距离D=CE=OC+OE=2+
∴点C到图形G1的距离跨度R=D-d=2+-(-2))=4;
故答案为2,2,4.
②a、设⊙O内一点P的坐标为(x,y),
∴OP=
∴点P到⊙O的最小距离d=2-OP,点P到⊙O的最大距离D=2+OP,
∴点P到图形G1的距离跨度R=D-d=2+OP-(2-OP)=2OP;
∵图形G1的距离跨度为2,
∴2OP=2,
∴OP=1,
∴=1
∴x2+y2=1,
即:到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
b、设⊙O外一点Q的坐标为(x,y),
∴OQ=
∴点Q到⊙O的最小距离d=OQ-2,点P到⊙O的最大距离D=OQ+2,
∴点P到图形G1的距离跨度R=D-d=OQ+2-(OQ-2)=4;
∵图形G1的距离跨度为2,
∴此种情况不存在,
所以,到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
故答案为:圆;
(2)设直线y=k(x+1)上存在到G2的距离跨度为2的点P(m,k(m+1)),
∴OP=
由(1)②知,圆内一点到图形圆的跨度是此点到圆心距离的2倍,圆外一点到图形圆的跨度是此圆的直径,
∵图形G2为以C(1,0)为圆心,2为半径的圆,到G2的距离跨度为2的点,
∴距离跨度小于图形G2的圆的直径4,
∴点P在图形G2⊙C内部,
∴R=2OP=2
∵直线y=k(x+1)上存在到G2的距离跨度为2的点P,
∴2=2
∴(k2+1)m2+2(k2-1)m+k2=0①,
∵存在点P,
∴方程①有实数根,
∴△=4(k2-1)2-4×(k2+1)k2=-12k2+4≥0,
(3)如图,作EC⊥OP于C,交⊙E于D、H.
由题意:⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,此时以E为圆心1为半径的圆与射线OP相切,当以E为圆心1为半径的圆与射线OP有交点时,满足条件,
∴CD=2,CH=4,CE=1,
∵射线OP的解析式为y=,
∴∠COE=30°,OE=2CE=2,
当E′(-1,0)时,点O到⊙E的距离跨度为2,
观察图象可知,满足条件的圆心E的横坐标xE的取值范围:-1≤xE≤2.
故答案为:-1≤xE≤2.