题目内容
【题目】刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径.此时圆内接正六边形的周长为,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为______.(参考数据:)
【答案】3.12
【解析】
连接OA1、OA2,根据正十二边形的性质得到∠A1OA2=30°,△A1OA2是等腰三角形,作OM⊥A1A2于M,根据等腰三角形三线合一的性质得出∠A1OM=15°,A1A2=2A1M.设圆的半径R,解直角△A1OM,求出A1M,进而得到正十二边形的周长L,那么圆周率.
如图,设半径为R的圆内接正十二边形的周长为L.
连接OA1、OA2,
∵十二边形A1A2…A12是正十二边形,
∴∠A1OA2=30°.
作OM⊥A1A2于M,又OA1=OA2,
∴∠A1OM=15°,A1A2=2A1M.
在直角△A1OM中,A1M=OA1sin∠A1OM=0.26R,
∴A1A2=2A1M=0.52R,
∴L=12A1A2=6.24R,
∴圆周率.
故答案为3.12.
练习册系列答案
相关题目