题目内容

【题目】如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG的长为

【答案】
【解析】解:作BH⊥CD于H,如图,

在Rt△ABC中,∠ABC=90°,∵sin∠BAC= =

∴AC=3BC=6,

∵BC=BD=2,

∴CH=DH,

∵∠HBC+∠ACB=90°,∠BAC+∠ACB=90°,

∴∠HBC=∠BAC,

∴sin∠HBC=

在Rt△HBC中,∵sin∠HBC= =

∴HC= BC=

∴CD=2CH=

∴AD=AC﹣CD=6﹣ =

∵Rt△ABC绕点C旋转到Rt△FEC的位置,

∴∠BCE=∠ACF,CB=CE,CA=CF,

∴∠CBE= (180°﹣∠BCE),∠CAF= (180°﹣∠ACF),

∴∠CBE=∠CAF,

∵∠BDC=∠ADG,

∴∠AGD=∠BCD,

∵BC=BD,

∴∠BCD=∠BDC,

∴∠ADG=∠AGD,

∴AG=AD=

所以答案是

【考点精析】解答此题的关键在于理解余角和补角的特征的相关知识,掌握互余、互补是指两个角的数量关系,与两个角的位置无关,以及对等腰三角形的性质的理解,了解等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网