题目内容

【题目】(1)探索发现

如图1,在△ABC中,点D在边BC上,△ABD△ADC面积分别记为S1S2,试判断的数量关系,并说明理由.

(2)阅读分析

小东遇到这样一个问题:如图2,在Rt△ABC中,AB=AC,∠BAC=90°,射线AMBC于点D,点EFAM上,且∠CEM=BFM=90°,试判断BFCEEF三条线段之间的数量关系.

小东利用一对全等三角形,经过推理使问题得以解决.

填空:①图2中的一对全等三角形为_________

BFCEEF三条线段之间的数量关系为__________________.

(3)类比探究

如图3,在四边形ABCD中,AB=ADACBD交于点O,点EF在射线AC上,且∠BCF=DEF=BAD.

判断BCDECE三条线段之间的数量关系,并说明理由;

②若OD=3OB△AED的面积为2,直接写出四边形ABCD的面积.

【答案】(1)=;(2)①△AEC≌△BFA,②EC=EF+BF; (3)①DE=BC+CE, ②8

【解析】

(1)过点A作AEBC,然后根据三角形面积公式求得两个三角形的面积,即可得出答案;(2)依据AAS可证明△AEC≌△BFA,由全等三角形的性质可得,AE=BF,EC=AF,由AF=EF+AE,通过等量代换即可得出答案;

(3)①依据AAS可证明△ABC≌△DAE,通过等量代换即可得出答案,②因为△AED的面积为2,根据全等三角形的性质可得S△ABC=2,然后根据(1)中的结论可求S△ADC=3S△ABC=6,即可得到答案.

解:(1)=,

理由:如图,过点A作AEBC,

∵S1=S△ABD=BDAE,S2= S△ADC=DCAE,

==;

(2)①△AEC≌△BFA,

理由:∵∠CEM=∠BFM=90°,

∴∠BFA=∠AEC=90°,

∴∠ABF+∠BFA=90°,

又∵∠BFA+∠FAC=90°,

∴∠ABF=∠EAC,

∵∠BFA=∠AEC=90°,

∠ABF=∠EAC,AB=AC,

∴△AEC≌△BFA.

②EC=EF+BF,

理由:∵△AEC≌△BFA,

∴AE=BF,EC=AF,

又∵AF=EF+AE,

∴EC=EF+BF.

(3)①DE=BC+CE,

理由:∵∠BCF=∠DEF,

∴∠AED=∠BCA,

∵∠ADE+∠EAD=∠DEF,

∠ABF+∠FAD=∠BAD,

∠DEF=∠BAD,

∴∠BAF=∠ADE,

∵∠AED=∠BCA,

∠BAC=∠ADE,AB=AD,

∴△ABC≌△DAE,

∴BC=AE,DE=AC,

又∵AC=AE+EC,

∴DE=BC+CE.

②∵△ABC≌△DAE, S△AED=2,

∴S△ABC=2,

∵OD=3OB,

,,

∴S△ADC=3S△ABC=6,

∴S四边形ABCD= S△ADC+ S△ABC=8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网