题目内容
【题目】如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.
(1)求证:AEBC=ADAB;
(2)若半圆O的直径为10,sin∠BAC=,求AF的长.
【答案】(1)详见解析;(2).
【解析】
试题分析:(1)根据已知条件易证△EAD∽△ABC,根据相似三角形的性质即可得结论;(2))作DM⊥AB于M,利用锐角三角函数和勾股定理分别求出DM、BM的长,再由DM∥AE,得,代入数据即可求得AF的长.
试题解析:(1)证明:∵AB为半圆O的直径,
∴∠C=90°,
∵OD⊥AC,
∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,
∵AE是切线,
∴OA⊥AE,
∴∠E+∠AOE=90°,
∴∠E=∠CAB,
∴△EAD∽△ABC,
∴AE:AB=AD:BC,
∴AEBC=ADAB.
(2)解:作DM⊥AB于M,
∵半圆O的直径为10,sin∠BAC=,
∴BC=ABsin∠BAC=6,
∴AC==8,
∵OE⊥AC,
∴AD=AC=4,OD=BC=3,
∵sin∠MAD==,
∴DM=,AM===,BM=AB﹣AM=,
∵DM∥AE,
∴,
∴AF=.
练习册系列答案
相关题目