题目内容
【题目】如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)试说明:AB∥CD;
(2)若∠2=25°,求∠3的度数.
【答案】
(1)解:∵∠ABD和∠BDC的平分线交于E,
∴∠ABD=2∠1,∠BDC=2∠2,
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°,
∴AB∥CD
(2)解:∵DE平分∠BDC,
∴∠EDF=∠2=25°,
∵∠1+∠2=90°,
∴∠FED=90°,
∴∠3=180°﹣90°﹣25°=65°
【解析】(1)根据角平分线定义求出∠ABD+∠BDC=180°,根据平行线的判定推出即可;(2)根据角平分线求出∠EDF,根据三角形外角性质求出∠FED,根据三角形内角和定理求出即可.
【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
练习册系列答案
相关题目
【题目】九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:则该班学生A卷成绩的众数和中位数分别是( )
成绩(分) | 80 | 82 | 84 | 86 | 87 | 90 |
人数 | 8 | 12 | 9 | 3 | 5 | 8 |
A. 82分,82分B. 82分,83分C. 80分,82分D. 82分,84分