题目内容
【题目】如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是( )
A. B.
C. D.
【答案】C
【解析】
试题分析:求△ABE的面积y时,可把AB看作底边,E到AB的垂线段看作高.
分三种情况:
①动点E从点B出发,在BC上运动.
∵BC=4cm,动点E在BC段的平均速度是1cm/s,
∴动点E在BC段的运动时间为:4÷1=4(s).
∵y=ABBE=×6×t=3t,
∴y=3t(0≤t≤4),
∴当0≤t≤4时,y随t的增大而增大,故排除A、B;
②动点E在CD上运动.
∵CD=AB=6cm,动点E在CD段的平均速度是2cm/s,
∴动点E在CD段的运动时间为:6÷2=3(s).
∵y=ABBC=×6×4=12,
∴y=12(4<t≤7),
∴当4<t≤7时,y=12;
③动点E在DA上运动.
∵DA=BC=4cm,动点E在DA段的平均速度是4cm/s,
∴动点E在DA段的运动时间为:4÷4=1(s).
∵y=ABAE=×6×[4﹣4(t﹣7)]=96﹣12t,
∴y=96﹣12t(7<t≤8),
∴当7<t≤8时,y随t的增大而减小,故排除D.
综上可知C选项正确.
故选C.
练习册系列答案
相关题目