题目内容
【题目】如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0).
(1)求直线y=kx+b的解析式;
(2)求两条直线与y轴围成的三角形面积;
(3)直接写出不等式(k+2)x+b≥0的解集.
【答案】(1)一次函数的解析式是y=-x+;(2)S△ABC=;(3)x≥-1.
【解析】试题分析:利用代入法求出点A的坐标,然后根据待定系数法求出一次函数的解析式;
(2)根据图像求出交点C的坐标,然后可求三角形的面积;
(3)根据图像的位置求出不等式的解集.
试题解析:解:(1)把A(a,2)代入y=-2x中,得-2a=2,∴a=-1,∴A(-1,2),把A(-1,2)、B(2,0)代入y=kx+b中得,∴k=-,b=,∴一次函数的解析式是y=-x+;
(2)设直线AB与y轴交于点C,则C(0,),∴S△ABC=××1=;
(3)不等式(k+2)x+b≥0可以变形为kx+b≥-2x,结合图象得到解集为:x≥-1.
练习册系列答案
相关题目