题目内容
【题目】如图,在矩形ABCD中,点E是BC上的一个动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,
(1)试证明:CH=EF+EG
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则CH、EF、EG之间有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想
【答案】(1)见解析; (2)CH=EF-EG;(3)EF+EG= BD
【解析】
(1)要证明CH=EF+EG,首先要想到能否把线段CH分成两条线段而加以证明,就自然的想到添加辅助线,若作CE⊥NH于N,可得矩形EFHN,很明显只需证明EG=CN,最后根据AAS可求证△EGC≌△CNE得出结论.
(2)过C点作CO⊥EF于O,可得矩形HCOF,因为HC=FO,所以只需证明EO=EG,最后根据AAS可求证△COE≌△CGE得出猜想.
(3)连接BE和AC,交BD于O,由正方形的性质得出AC⊥BD,OA=OB=OC=OD,由三角形面积关系得出S△BCH=S△BCE+S△BHE,证出OC=EG+EF,即可得出结论.
(1)证明:过E点作EN⊥CH于N.
∵EF⊥BD,CH⊥BD,
∴四边形EFHN是矩形.
∴EF=NH,FH∥EN.
∴∠DBC=∠NEC.
∵四边形ABCD是矩形,
∴AC=BD,且互相平分
∴∠DBC=∠ACB
∴∠NEC=∠ACB
∵EG⊥AC,EN⊥CH,
∴∠EGC=∠CNE=90°,
又∵EC=CE,
∴△EGC≌△CNE.
∴EG=CN
∴CH=CN+NH=EG+EF;
(2)解:猜想CH=EF-EG;
过C点作CO⊥EF于O,
∵EF⊥BD,CH⊥BD,
易得四边形COFH为矩形,
∴CH=OF,
由(1)得∠DBC=∠ACB
又CO∥BD,
∴∠OCE=∠DBC,且∠ECG=∠ACB,
∴∠OCE=∠GCE
又CE=CE,
∴△COE≌△CGE
∴EO=EG
∴CH=EF-EO=EF-EG;
(3)解:EF+EG=BD;
连接BE和AC,交BD于O,如图3所示:
∵四边形ABCD是正方形,
∴AC⊥BD,OA=OB=OC=OD,
∵EF⊥BD于点F,EG⊥BC于点G,
∵S△BCH=S△BCE+S△BHE,
∴BHOC=BCEG+BHEF,
∴OC=EG+EF,
∴EF+EG=BD;
【题目】有一学校为了解九年级学生某次的体育测试成绩,现对这次体育测试成绩进行随机抽样调查,结果统计如下,其中扇形统计图中C等级所在扇形的圆心角为36°.
被抽取的体育测试成绩频数分布表
等级 | 成绩(分) | 频数(人数) |
A | 36<x≤40 | 19 |
B | 32<x≤36 | b |
C | 28<x≤32 | 5 |
D | 24<x≤28 | 4 |
E | 20<x≤24 | 2 |
合计 | a |
请你根据以上图表提供的信息,解答下列问题:
(1)a= ,b= ;
(2)A等级的频率是 ;
(3)在扇形统计图中,B等级所对应的圆心角是 度;
(4)已知该校九年级共有780学生,估计成绩(分)在32<x≤36之间的学生约有 人.