题目内容
【题目】在△ABC 中,BC=AC,∠BCA=90°,P 为直线 AC 上一点,过 A作 AD⊥BP 于 D,交直线 BC 于 Q.
(1)如图 1,当 P 在线段 AC 上时,求证:BP=AQ.
(2)当 P 在线段 AC 的延长线上时,请在图 2 中画出图形,并求∠CPQ.
(3)如图 3,当 P 在线段 AC 的延长线上时,∠DBA= 时,AQ=2BD.
【答案】(1)见解析;(2) 45°;(3) 22.5°.
【解析】
(1)首先根据内角和定理得出∠DAP=∠CBP,进而得出△ACQ≌△BCP即可得出答案;
(2)首先证明△AQC≌△BPC(ASA),进而得出PC=CQ,利用等腰三角形的性质得出即可;
(3)首先证明∠P=∠Q,进而得出△ACQ≌△BCP(ASA),即可得出BP=AQ,求出即可.
(1)∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP.
在△ACQ和△BCP中,∵,∴△ACQ≌△BCP(ASA),∴BP=AQ;
(2)如图2所示:
∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ.
在△AQC和△BPC中,∵,∴△AQC≌△BPC(ASA),∴QC=CP.
∵∠QCD=90°,∴∠CQP=∠CPQ=45°;
(3)当∠DBA=22.5°时,AQ=2BD.
∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB.
∵AD⊥BP,∴AD=DP.
∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q.在△ACQ和△BCP中,∵
,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.
故答案为:22.5°.
练习册系列答案
相关题目