题目内容

【题目】如图,数轴的原点为O,点ABC是数轴上的三点,点B对应的数为1AB8BC3,动点PQ同时从AC出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t0

1)求点AC分别对应的数;

2)求点PQ分别对应的数;(用含t的式子表示)

3)试问当t为何值时,OPOQ

【答案】(1)点A对应的数为﹣7,点C对应的数为4.(2)点P对应的数是﹣7+2t,点Q对应的数是4+t.(3)当t111时,OPOQ

【解析】

1)由点B对应的数及线段ABBC的长,可找出点AC对应的数;
2)根据点PQ的出发点、速度及方向,可找出当运动时间为t秒时点PQ对应的数;
3)分点P在原点的左侧及点P在原点的右侧两种情况考虑,由OP=OQ,即可得出关于t的一元一次方程,解之即可得出结论.

解:(118=﹣71+34

∴点A对应的数为﹣7,点C对应的数为4

2)∵动点PQ同时从AC出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动,

∴当运动时间为t秒时,点P对应的数是﹣7+2t,点Q对应的数是4+t

3)①当P在原点左侧时,OP72tOQ4+t

72t4+t

解得:t1

②当P在原点右侧时,OP2t7OQ4+t

2t74+t

解得:t11

综上所述:当t111时,OPOQ

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网