题目内容
【题目】如图,∠MBC和∠NCB是△ABC的外角,点O是∠MBC和∠NCB的平分线的交点,点O叫做△ABC的旁心.
(1)已知∠A=100°,那么∠BOC等于多少度;
(2)猜想∠BOC与∠A有什么数量关系?并证明你的猜想.
【答案】(1)40;(2)90°-∠A,见解析.
【解析】
(1)根据BO平分∠MBC,CO平分∠NCB,即可得到∠OBC=∠MBC,∠OCB=∠NCB,利用三角形外角性质,即可得出∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),再根据∠BOC=180°-∠OBC-∠OCB进行计算即可.
(2)利用(1)中的方法,即可得到∠BOC与∠A的数量关系.
解:(1)∵BO平分∠MBC,CO平分∠NCB,
∴∠OBC=∠MBC,∠OCB=∠NCB,
∵∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
∴∠BOC=180°-∠OBC-∠OCB
=180°-(∠A+∠ACB)-(∠A+∠ABC)
=180°-(∠A+∠ACB+∠A+∠ABC)
=180°-(180°+∠A)
=90°-∠A
=90°-×100°
=40°,
故答案为:40;
(2)猜想:∠BOC=90°-∠A.
证明:∵BO平分∠MBC,CO平分∠NCB,
∴∠OBC=∠MBC,∠OCB=∠NCB,
∵∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
∴∠BOC=180°-∠OBC-∠OCB
=180°-(∠A+∠ACB)-(∠A+∠ABC)
=180°-(∠A+∠ACB+∠A+∠ABC)
=180°-(180°+∠A)
=90°-∠A.
故答案为:(1)40;(2)90°-∠A,见解析.
【题目】在平面直角坐标系中,如果点的横坐标和纵坐标相等,则称点为和谐点,例如点,,,…都是和谐点,若二次函数的图象上有且只有一个和谐点,当时,函数的最小值为,最大值为,则的取值范围是________.
【题目】A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):
平均数 | 中位数 | 众数 | |
A店 | 8.5 |
|
|
B店 |
| 8 | 10 |
(1)根据图a数据填充表格b所缺的数据;
(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.