题目内容
【题目】如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)连接DM并延长交BC于N,求证:CN=AD;
(2)求证:△BMD为等腰直角三角形;
(3)将△ADE绕点A逆时针旋转90°时(如图②所示位置),其它条件不变,△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.
【答案】(1)见解析;(2)见解析;(3)仍成立,见解析;
【解析】
(1)由∠ABC=∠ADE=90°可得DE∥BC,再根据平行线的性质,推出∠DEM=∠MCB,根据ASA推出△EMD≌△CMN,证出CN=ED,因为AD=DE,即可得到CN=AD;
(2)由(1)可知CN=AD,DM=MN,再由AB=AC,可得BD=BN,从而可得△DBN是等腰直角三角形,且BM是底边DN上的中线,再利用等腰三角形的三线合一的性质和直角三角形的性质即可得到△BMD为等腰直角三角形;
(3)作CN∥DE交DM的延长线于N,连接BN,根据平行线的性质求出∠E=∠NCM,根据ASA证△DBA≌△NBC,推出△DBN是等腰直角三角形,根据等腰直角三角形的性质即可推出△BMD为等腰直角三角形.
(1)证明:如图①,
∵∠EDA=∠ABC=90°,
∴DE∥BC,
∴∠DEM=∠MCB,
在△EMD和△CMN中,
,
∴△EMD≌△CMN(ASA),
∴CN=DE,
∵AD=DE,
∴CN=AD;
(2)证明:由(1)得CN=AD,△EMD≌△CMN,
∴DM=MN,
∵BA=BC,CN=AD,
∴BD=BN,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,BM=DN=DM,
∴△BMD为等腰直角三角形;
(3)答:△BMD为等腰直角三角形的结论仍成立,
证明:如图②,作CN∥DE交DM的延长线于N,连接BN,
∴∠E=∠MCN=45°,
∵∠DME=∠NMC,EM=CM,
∴△EMD≌△CMN(ASA),
∴CN=DE=DA,MN=MD,
又∵∠DAB=180°-∠DAE-∠BAC=90°,
∠BCN=∠BCM+∠NCM=45°+45°=90°,
∴∠DAB=∠NCB,
在△DBA和△NBC中,
,
∴△DBA≌△NBC(SAS),
∴∠DBA=∠NBC,DB=BN,
∴∠DBN=∠ABC=90°,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,∠DBM=∠DBN=45°=∠BDM,
∴MB=MD,
∴△BMD为等腰直角三角形.