题目内容
【题目】如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.
(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】解:(1)证明:∵A(﹣6,0),B(4,0),C(0,8),
∴AB=6+4=10,。∴AB=AC。
由翻折可得,AB=BD,AC=CD。∴AB=BD=CD=AC。∴四边形ABCD是菱形。
∴CD∥AB。
∵C(0,8),∴点D的坐标是(10,8)。
(2)∵y=ax2﹣10ax+c,∴对称轴为直线。
设M的坐标为(5,n),直线BC的解析式为y=kx+b,
∴,解得。
∴直线BC的解析式为y=﹣2x+8。
∵点M在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2。
∴M(5,,-2).
又∵抛物线y=ax2﹣10ax+c经过点C和M,
∴,解得。
∴抛物线的函数表达式为。
(3)存在。点P的坐标为P1(),P2(﹣5,38)
【解析】
试题分析:(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC,根据菱形的判定和性质可得点D的坐标。
(2)根据对称轴公式可得抛物线的对称轴,设M的坐标为(5,n),直线BC的解析式为y=kx+b,根据待定系数法可求M的坐标,再根据待定系数法求出抛物线的函数表达式。
(3)分点P在CD的上面下方和点P在CD的上方两种情况,根据等底等高的三角形面积相等可求点P的坐标:
设P,
当点P在CD的上面下方,根据菱形的性质,知点P是AD与抛物线的交点,由A,D的坐标可由待定系数法求出AD的函数表达式: ,二者联立可得P1();
当点P在CD的上面上方,易知点P是∠D的外角平分线与抛物线的交点,此时,∠D的外角平分线与直线AD垂直,由相似可知∠D的外角平分线PD的斜率等于-2,可设其为,将D(10,8)代入可得PD的函数表达式: ,与抛物线联立可得P2(﹣5,38)。
【题目】小东根据学习一次函数的经验,对函数y=|2x﹣1|的图象和性质进行了探究.下面是小东的探究过程,请补充完成:
(1)函数y=|2x﹣1|的自变量x的取值范围是 ;
(2)已知:
①当x=时,y=|2x﹣1|=0;
②当x>时,y=|2x﹣1|=2x﹣1
③当x<时,y=|2x﹣1|=1﹣2x;
显然,②和③均为某个一次函数的一部分.
(3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;
(5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.
【题目】某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.
A型客车 | B型客车 | |
载客量(人/辆) | 40 | 25 |
日租金(元/辆) | 320 | 200 |
车辆数(辆) | a | b |
(1)求a、b的值;
(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.
①最多能租用A型客车多少辆?
②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.