题目内容
【题目】若和均为等腰三角形,且.
(1)如图(1),点B是的中点,判定四边形的形状,并说明理由;
(2)如图(2),若点G是的中点,连接并延长至点F,使.求证:①,②.
【答案】(1)四边形BEAC是平行四边形,证明见解析;(2)①见解析;②见解析
【解析】
(1)利用等腰直角三角形的性质证得,,推出,再根据平行于同一直线的两直线平行即可推出结论;
(2)①利用“SAS”证得,即可证明结论;
②延长至点H,使,证得,推出,利用①的结论即可证明.
(1)证明:四边形是平行四边形.
理由如下:
∵为等腰三角形且,
∴,
∵B是的中点,
∴,
∴,
∵是等腰三角形,,
∴,
∴,
∴,
又∵,
∴.
∴.
∴四边形是平行四边形.
(2)证明:①∵和为等腰三角形,
∴,
∵,
∴,
即,
∴,
∴;
②延长至点H,使.
∵G是中点,
∴,
又,
∴,
∴,
∵,
∴,
∴,
∴,
∴.
练习册系列答案
相关题目
【题目】生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析.
日均可回收物回收量(千吨) | 合计 | |||||
频数 | 1 | 2 | 3 | |||
频率 | 0.05 | 0.10 | 0.15 | 1 |
表中组的频率满足.
下面有四个推断:
①表中的值为20;
②表中的值可以为7;
③这天的日均可回收物回收量的中位数在组;
④这天的日均可回收物回收量的平均数不低于3.
所有合理推断的序号是( )
A.①②B.①③C.②③④D.①③④