题目内容
【题目】如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.
(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.
【答案】
(1)
解:二次函数y=x2﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),
将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2,9),
故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5
(2)
解:∵A(﹣1,0),B(1,0),
∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2PO2+2,
∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,
∴OP的最大值=OC+PO= +1,
∴PA2+PB2最大值=2( +1)2+2=38+4
(3)
解:M与N所围成封闭图形如图所示,
由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个
【解析】(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2PO2+2可知OP最大时,PA2+PB2最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.本题考查二次函数综合题、最值问题等知识,解题的关键是记住函数图象的平移、翻折变换的规律,学会转化的思想,把问题转化为我们熟悉的问题解决,属于中考压轴题.
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a= , b= , 并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?