题目内容

【题目】如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.

(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.

【答案】
(1)

解:二次函数y=x2﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),

将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2,9),

故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5


(2)

解:∵A(﹣1,0),B(1,0),

∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2PO2+2,

∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,

∴OP的最大值=OC+PO= +1,

∴PA2+PB2最大值=2( +1)2+2=38+4


(3)

解:M与N所围成封闭图形如图所示,

由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个


【解析】(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2PO2+2可知OP最大时,PA2+PB2最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.本题考查二次函数综合题、最值问题等知识,解题的关键是记住函数图象的平移、翻折变换的规律,学会转化的思想,把问题转化为我们熟悉的问题解决,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网