题目内容
如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.
解:由直线与x轴交于点A的坐标为(-1,0),
∴OA=1.
又∵OC=2OA,
∴OC=2,
∴点B的横坐标为2,
代入直线,得y=,
∴B(2,).
∵点B在双曲线上,
∴k=xy=2×=3,
∴双曲线的解析式为y=.
分析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.
点评:本题考查了反比例函数的综合知识,解题的关键是根据一次函数求出反比例函数与直线的交点坐标.
∴OA=1.
又∵OC=2OA,
∴OC=2,
∴点B的横坐标为2,
代入直线,得y=,
∴B(2,).
∵点B在双曲线上,
∴k=xy=2×=3,
∴双曲线的解析式为y=.
分析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.
点评:本题考查了反比例函数的综合知识,解题的关键是根据一次函数求出反比例函数与直线的交点坐标.
练习册系列答案
相关题目