题目内容
【题目】如图乙,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线 BD,CE的交点.
(1)如图甲,将△ADE 绕点A 旋转,当 C、D、E 在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
(2)若 AB=4,AD=2,把△ADE 绕点 A 旋转,
①当∠CAE=90°时,求 PB 的长;
②直接写出旋转过程中线段 PB 长的最大值.
【答案】(1)①②③;(2)①PB=或
,②PB长的最小值是
-2,最大值是
+2.
【解析】
(1)①由条件证明△ABD≌△ACE,就可以得到结论②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,进而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论;
(2)①分两种情形a、如图乙-1中,当点E在AB上时,BE=AB-AE=2.由△PEB∽△AEC,得=
,由此即可解决问题.b、如图乙-2中,当点E在BA延长线上时,BE=6.解法类似;
②如图乙-3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.分别求出PB即可.
(1)①②③;
(2)①解:a、如图2中,当点E在AB上时,BE=AB-AE=2.
∵∠EAC=90°,
∴CE=,
同(1)可证△ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠PEB=∠AEC,
∴△PEB∽△AEC.
∴,
∴,
∴PB=
b、如图3中,当点E在BA延长线上时,BE=6.
∵∠EAC=90°,
∴CE=,
同(1)可证△ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠BEP=∠CEA,
∴△PEB∽△AEC,
∴,
∴,
∴PB=,
综上,PB=或
.
②解:a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.
理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)
∵AE⊥EC,
∴EC=,
由(1)可知,△ABD≌△ACE,
∴∠ADB=∠AEC=90°,BD=CE=2,
∴∠ADP=∠DAE=∠AEP=90°,
∴四边形AEPD是矩形,
∴PD=AE=2,
∴PB=BD-PD=2-2.
b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.
理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)
∵AE⊥EC,
∴EC=,
由(1)可知,△ABD≌△ACE,
∴∠ADB=∠AEC=90°,BD=CE=,
∴∠ADP=∠DAE=∠AEP=90°,
∴四边形AEPD是矩形,
∴PD=AE=2,
∴PB=BD+PD=+2.
综上所述,PB长的最小值是-2,最大值是
+2.
![](http://thumb.zyjl.cn/images/loading.gif)