题目内容
【题目】已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)当y1随着x的增大而增大时,求自变量x的取值范围;
(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
【答案】(1)若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(2)当n=时,2n2﹣5n的最小值为﹣.
【解析】
(1)分别利用①若C(0,3),即c=3,以及②若C(0,-3),即c=-3,得出A,B点坐标,进而求出函数解析式,进而得出答案;
(2)利用①若c=3,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,得出y1向左平移n个单位后,则解析式为:y3=-(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=-3,则y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n个单位后,则解析式为:y3=(x-1+n)2-4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.
(1)∵x1x2<0,
∴x1,x2异号,
①若C(0,3),即c=3,
把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,
∴y2=﹣3x+3,
把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,
即x1=1,
∴A(1,0),
∵x1,x2异号,x1=1>0,∴x2<0,
∵|x1|+|x2|=4,
∴1﹣x2=4,
解得:x2=﹣3,则B(﹣3,0),
代入y1=ax2+bx+3得,,
解得:,
∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,
则当x≤﹣1时,y随x增大而增大.
②若C(0,﹣3),即c=﹣3,
把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,
∴y2=﹣3x﹣3,
把A(x1,0),代入y2=﹣3x﹣3,
则﹣3x1﹣3=0,
即x1=﹣1,
∴A(﹣1,0),
∵x1,x2异号,x1=﹣1<0,∴x2>0
∵|x1|+|x2|=4,
∴1+x2=4,
解得:x2=3,则B(3,0),
代入y1=ax2+bx+3得,,
解得:,
∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,
则当x≥1时,y随x增大而增大,
综上所述,若c=3,当y随x增大而增大时,x≤﹣1;
若c=﹣3,当y随x增大而增大时,x≥1;
(2)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,
y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,
则当x≤﹣1﹣n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,
要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,
即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,
解得:n≤﹣1,
∵n>0,∴n≤﹣1不符合条件,应舍去;
②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,
y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,
则当x≥1﹣n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,
要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,
即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,
解得:n≥1,
综上所述:n≥1,
2n2﹣5n=2(n﹣)2﹣,
∴当n=时,2n2﹣5n的最小值为:﹣.