题目内容
【题目】如图,对称轴平行于y轴的抛物线与x轴交于点A、B,与y轴交于点C,过C作CD∥x轴,与抛物线交于点D.若OA=1,CD=4,则线段AB的长为 .
【答案】2
【解析】解:∵对称轴平行于y轴的抛物线与x轴交于点A、B,CD∥x轴,
∴点D与点C是抛物线上的对称点,
∴CD=2OA+AB,
∴AB=CD﹣2OA=4﹣2×1=2;
所以答案是:2.
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
【题目】某年级共有300名学生,为了解该年级学生在,两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.
收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75
整理、描述数据
项目的频数分布表
分组 | 划记 | 频数 |
— | 1 | |
2 | ||
2 | ||
| 8 | |
5 |
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计项目和项目成绩都是优秀的人数最多为________人.