题目内容
【题目】在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”.
(1)在点,,中,原点的“距点”是_____(填字母);
(2)已知点,点,过点作平行于轴的直线.
①当时,直线上点的“距点”的坐标为_____;
②若直线上存在点的“点”,求的取值范围.
(3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围.
【答案】(1);(2)①;②;(3).
【解析】
(1)根据定义判断即可;
(2)①设直线上与点的“距点”的点的坐标为(a,3),根据定义列出关于a的方程,解方程即可;
②点坐标为,直线上点的纵坐标为b,由题意得,转化为不等式组,解不等式组即可.
(3)分类讨论,分别取P与点M重合、P与点N重合讨论。当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),根据定义列出关于m的绝对值方程,解方程,取较小的值;当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),根据定义列出关于m的绝对值方程,解方程,取较大的值,问题得解.
解:(1)∵,O(0,0),
∴,
∴点D与原点互为“距点”;
∵,O(0,0),
∴,
所以点D与原点互为“距点”;
∵,O(0,0),
∴,
所以点D与原点互为“距点”;
故答案为:;
(2)①设直线上与点的“距点”的点的坐标为(a,3),
则,
解得a=2
故答案为(2,3);
②如图,点坐标为,直线上点的纵坐标为b,设直线上点的坐标为(c,b)
则:,
∴,
∴,
∴,
即的取值范围是;
(3)如图(1),当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),
∵点P与点Q互为“5-距点",P(1,2),
∴,
解得: ,;
∵,
∴取.
当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),
∵点P与点Q互为“5-距点",则P(3,2),
∴,
解得:, ,
∵
∴取
∴.