题目内容
【题目】如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=OC,则四边形ABCD是什么特殊四边形?请直接给出你的结论,不必证明.
【答案】(1)详见解析;(2)若OD=OC,则四边形ABCD是矩形.
【解析】试题分析:(1)根据平行线的性质证明∠DFO=∠BEO,由O为AC的中点和AE=CF,证明OE=OF,根据ASA即可证得;
(2)根据全等三角形的性质,证明OB=OD,根据对角线互相平分且相等的四边形是矩形即可得证.
(1)证明:∵DF∥BE,
∴∠FDO=∠EBO,∠DFO=∠BEO,
∵O为AC的中点,即OA=OC,AE=CF,
∴OA﹣AE=OC﹣CF,即OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(AAS);
(2)若OD=OC,则四边形ABCD是矩形.
理由是:∵△BOE≌△DOF,
∴OB=OD,
又∵OA=OC,OD=OC,
∴OA=OC= OB=OD,
∴四边形ABCD是矩形.
练习册系列答案
相关题目