题目内容

【题目】小敏尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②); 再沿过D点的直线折叠, 使得 C点落在DA边上的点N处, E点落在AE边上的点M处,折痕为 DG(如图).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD的长与宽的比值为( )

A.2
B.3
C.
D.

【答案】C
【解析】解:连接DE,如图,

∵沿过A点的直线折叠,使得B点落在AD边上的点F处,
∴四边形ABEF为正方形,
∴∠EAD=45°,
由第二次折叠知,M点正好在∠NDG的平分线上,
∴DE平分∠GDC,
∴Rt△DGE≌Rt△DCE,
∴DC=DG,
又∵△AGD为等腰直角三角形,
∴AD= DG= CD,
∴矩形ABCD长与宽的比值=
故选C.
【考点精析】掌握翻折变换(折叠问题)是解答本题的根本,需要知道折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网