题目内容

设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根.试问:是否存在实数k,使得x1•x2>x1+x2成立,请说明理由.
精英家教网
分析:方程有两实数根下必须满足△=b2-4ac≥0.又由两根之积大于两根之和,根据根与系数的关系,即可得到关于k的不等式,解得k即可.
解答:解:∵方程有实数根,∴b2-4ac≥0,∴(-4)2-4(k+1)≥0,即k≤3.(2分)
x=
(-4)2-4(k+1)
2
=2±
3-k

x1+x2=(2+
3-k
)+(2-
3-k
)=4

x1x2=(2+
3-k
)•(2-
3-k
)=k+1
(3分)
若x1•x2>x1+x2,即k+1>4,∴k>3.
而k≤3,因此,不存在实数k,使得x1•x2>x1+x2成立.(3分)
点评:本题重点考查了一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网