题目内容
【题目】如图1,⊙O的直径AB为4,C为⊙O上一个定点,∠ABC=30°,动点P从A点出发沿半圆弧 向B点运动(点P与点C在直径AB的异侧),当P点到达B点时运动停止,在运动过程中,过点C作CP的垂线CD交PB的延长线于D点.
(1)求证:△ABC∽△PDC
(2)如图2,当点P到达B点时,求CD的长;
(3)设CD的长为 .在点P的运动过程中, 的取值范围为(请直接写出案).
【答案】
(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=∠PCD,
又∵∠A=∠P,
∴△ABC∽△PDC
(2)解:∵∠ABC=30°,AB=4,
∴BC= ,
∵△ABC∽△PDC,
∴∠D=∠ABC=30°,
∴CD=6
(3)解:如图,
∵AB是直径,∠ABC=30°,AB=4
∴∠ACB=90°,∠A=∠P=60°,AC=2,
∵CD⊥PC,
∴∠PCD=90°,CD=PCtan60°,
∵PC的最小值=AC=2,PC的最大值为直径=4,
∴CD的最小值为2 ,最大值为4 ,
∴2 ≤CD≤4
【解析】(1)利用圆周角定理,进而用"两角法"证出相似;(2)利用30度角的正切,由AB求出BC,再求出CD;(3)可用PC及三角函数表示出CD,当PC最小时,CD最小,CD最大,PC最大.
【考点精析】根据题目的已知条件,利用圆周角定理的相关知识可以得到问题的答案,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
练习册系列答案
相关题目