题目内容
【题目】如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)求证:CG=BG;
(3)若∠DBA=30°,CG=8,求BE的长.
【答案】(1)见解析;(2)见解析;(3)BE=8
【解析】
(1)连接OC,先证得,根据垂径定理得到OC⊥BD,根据CE∥BD推出OC⊥CE,即可得到结论;
(2)根据圆周角定理得出∠ACB=90°,然后根据同角的余角相等得出∠A=∠BCF,即可证得∠BCF=∠CBD,根据等角对等边即可证得结论;
(3)连接AD,根据圆周角定理得出∠ADB=90°,即可求得∠BAD=60°,根据圆周角定理得出∠DAC=∠BAC=30°,然后根据三角形相似和等腰三角形的判定即可求得BE的值.
(1)证明:连接OC,
∵∠A=∠CBD,
∴,
∴OC⊥BD,
∵CE∥BD,
∴OC⊥CE,
∴CE是⊙O的切线;
(2)证明:∵AB为直径,
∴∠ACB=90°,
∵CF⊥AB,
∴∠ACB=∠CFB=90°,
∵∠ABC=∠CBF,
∴∠A=∠BCF,
∵∠A=∠CBD,
∴∠BCF=∠CBD,
∴CG=BG;
(3)解:连接AD,
∵AB为直径,
∴∠ADB=90°,
∵∠DBA=30°,
∴∠BAD=60°,
∵,
∴∠DAC=∠BAC=∠BAD=30°,
∴,
∵CE∥BD,
∴∠E=∠DBA=30°,
∴AC=CE,
∴,
∵∠A=∠BCF=∠CBD=∠E=30°,
∴∠BCE=30°,
∴BE=BC,
∴△CGB∽△CBE,
∴,
∵CG=8,
∴BC=8,
∴BE=8.
练习册系列答案
相关题目