题目内容
(2013年广东梅州8分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB与点E,且CF=AE,
(1)求证:四边形BECF是菱形;
(2)若四边形BECF为正方形,求∠A的度数.
【答案】
解:(1)证明:∵EF垂直平分BC,∴CF=BF,BE=CE,∠BDE=90°,BD=CD。
又∵∠ACB=90°,∴EF∥AC。∴BE:AB=DB:BC。
∵D为BC中点,∴DB:BC=1:2。∴BE:AB=1:2。∴E为AB中点,即BE=AE。
∵CF=AE,∴CF=BE。
∴CF=FB=BE=CE。∴四边形BECF是菱形。
(2)∵四边形BECF是正方形,∴∠CBA=45°,
∵∠ACB=90°,∴∠A=45°。
【解析】(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,根据四边相等的四边形是菱形即可证明。
(2)正方形的性质知,对角线平分一组对角,即∠ABC=45°,进而求出∠A=45°。
考点:线段垂直平分线的性质,平行的判定和性质,菱形的判定,正方形的性质,直角三角形两锐角的关系。
练习册系列答案
相关题目
(2013年广东梅州8分)为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如表:
|
单价(元/棵) |
成活率 |
植树费(元/棵) |
A |
20 |
90% |
5 |
B |
30 |
95% |
5 |
设购买A种树苗x棵,绿化村道的总费用为y元,解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?
(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?