题目内容
【题目】阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”. 应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为( )
A.(60°,4)
B.(45°,4)
C.(60°,2 )
D.(50°,2 )
【答案】A
【解析】解:如图,设正六边形的中心为D,连接AD,
∵∠ADO=360°÷6=60°,OD=AD,
∴△AOD是等边三角形,
∴OD=OA=2,∠AOD=60°,
∴OC=2OD=2×2=4,
∴正六边形的顶点C的极坐标应记为(60°,4).
故选:A.
设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.
练习册系列答案
相关题目