题目内容
【题目】如图,AD为△ABC中∠ BAC的外角平分线,BD⊥AD于D,E为BC中点,DE=5,AC=3,则AB长为()
A.8.5B.8C.7.5D.7
【答案】D
【解析】
延长BD、CA交于点F,易证△ADF△ADB(ASA),则BD=DF,AB=AF,得到点D为BF中点,即DE为△BCF的中位线,再根据已知线段的长度,即可顺利求得AB的长.
解:如图,分别延长BD、AC交于点F,
∵AD为△ABC中∠BAC的外角平分线,
∴∠FAD=∠BAD,
∵BD⊥AD,
∴∠FDA=∠BDA=90°,
在△BDA和△FDA中,,
∴△BDA△FDA(ASA),
∴AB=AF,BD=FD,即D为BF的中点,
∵E为BC中点,
∴DE为△BCF的中位线,
∵DE=5,AC=3,
∴CF=2DE=25=10,
∴AF=CF-AC=10-3=7.
∴AB=AF=7.
故选D.