题目内容
【题目】为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:
(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.
(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
【答案】(1)从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg;(2)从消毒开始经过50分钟学生才可返回教室.
【解析】
(1)首先根据题意,药物燃烧阶段,室内每立方米空气中的含药量y与燃烧时间x成正比例;燃烧后,y与x成反比例,且其图象都过点(10,8),将数据代入用待定系数法可得反比例函数的关系式,分别求出函数解析式,再计算出y=4时,x的值即可;
(2)根据题意可知得<1.6,解不等式即可.
(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,
∴k1=,
∴此阶段函数解析式为y=x(0≤x≤10).
当y=4时,x=5;
设药物燃烧结束后函数解析式为y=(k2≠0),由题意得: =8,
∴k2=80,
∴此阶段函数解析式为y=(x≥10).,
当y=4时,x=20,
答:从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg;
(2)当y<1.6时,得<1.6,
∵x>0,
∴1.6x>80,
解得x>50.
答:从消毒开始经过50分钟学生才可返回教室.
【题目】为增强公民的节约意识,合理利用天然气费源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调能后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2 |
超出75 m3不超过125 m3的部分 | a |
超出125 m2的部分 | a+0.5 |
(1)若某户3月份用气量为60 m3,则应交费多少元?
(2)调价后每月支付燃气费用y(元)与每月用气量x(m3)的函数关系如图所示,求a的值及线段AB对应的一次函数的表达式;
(3)求射线BC对应的一次函数的表达式.