题目内容
【题目】如图,在等边△ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM以下说法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正确的有( )
A. 1个B. 2个C. 3个D. 4个
【答案】D
【解析】
由△ABD≌△ACE,△AEC≌△AMC,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形,可对④进行判断.
∵△ABC是等边三角形,
∴AB=AC,∠B=∠BAC=∠ACB=60°,
∵BD=CE,
∴△ABD≌△ACE,
∴AD=AE,∠BAD=∠EAC,
∵△AEC沿AC翻折得到△AMC,
∴△AEC≌△AMC,
∴AE=AM,∠ECA=∠MCA,
∴AD=AM,∠MCA=60°,故①②正确,
∵△AEC沿AC翻折得到△AMC,
∴AE=AM,EC=CM,
∴点A、C在EM的垂直平分线上,
∴AC垂直平分EM,
∴∠ENC=90°,
∵∠MCA=60°,
∴∠NMC=30°,
∴CM=2CN,故③正确,
∵∠BAD=∠EAC,∠ECA=∠MCA,
∴∠BAD=∠MCA,
∵∠BAD+∠DAC=60°,
∴∠DAC+∠CAM=60°,
即∠DAM=60°,又AD=AM,
∴△ADM是等边三角形,
∴MA=DM,故④正确,
综上所述,这四句话都正确,
故选D.
练习册系列答案
相关题目