题目内容
已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
(1)证明:∵∠ABC=90°,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE,
∴AB=AF.
∴AE-AB=AC-AF,
即FC=BE;
(2)∵AD=DC=2,DF⊥AC,
∴AF=
AC=
AE.
∴AG=CG,∠E=30°.
∵∠EAD=90°,
∴∠ADE=60°,
∴∠FAD=∠E=30°,
∴FC=
,
∵AD∥BC,
∴∠ACG=∠FAD=30°,
∴CG=2,
∴AG=2.
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE,
∴AB=AF.
∴AE-AB=AC-AF,
即FC=BE;
(2)∵AD=DC=2,DF⊥AC,
∴AF=
| 1 |
| 2 |
| 1 |
| 2 |
∴AG=CG,∠E=30°.
∵∠EAD=90°,
∴∠ADE=60°,
∴∠FAD=∠E=30°,
∴FC=
| 3 |
∵AD∥BC,
∴∠ACG=∠FAD=30°,
∴CG=2,
∴AG=2.
练习册系列答案
相关题目