题目内容
【题目】如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y= (x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y= (x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
【答案】
(1)解:点P在线段AB上,理由如下:
∵点O在⊙P上,且∠AOB=90°,
∴AB是⊙P的直径,
∴点P在线段AB上
(2)解:过点P作PP1⊥x轴,PP2⊥y轴,
由题意可知PP1、PP2,是△AOB的中位线,
故S△AOB= OA×OB= ×2PP1×2PP2,
∵P是反比例函数y= (x>0)图象上的任意一点,
∴S△AOB= OA×OB= ×2PP1×2PP2=2PP1×PP2=12
(3)证明:如图,连接MN,则MN过点Q,且S△MON=S△AOB=12.
∴OAOB=OMON,
∴ ,
∵∠AON=∠MOB,
∴△AON∽△MOB,
∴∠OAN=∠OMB,
∴AN∥MB.
【解析】(1)点P在线段AB上,由O在⊙P上,且∠AOB=90°得到AB是⊙P的直径,由此即可证明点P在线段AB上;(2)如图,过点P作PP1⊥x轴,PP2⊥y轴,由题意可知PP1、PP2是△AOB的中位线,故S△AOB= OA×OB= ×2PP1×PP2而P是反比例函数y= (x>0)图象上的任意一点,由此即可求出PP1×PP2=6,代入前面的等式即可求出S△AOB;(3)如图,连接MN,根据(1)(2)则得到MN过点Q,且S△MON=S△AOB=12,然后利用三角形的面积公式得到OAOB=OMON,然后证明△AON∽△MOB,最后利用相似三角形的性质即可解决问题.
【考点精析】本题主要考查了三角形中位线定理和圆周角定理的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.
【题目】自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )
组别 | 月用水量x(单位:吨) |
A | 0≤x<3 |
B | 3≤x<6 |
C | 6≤x<9 |
D | 9≤x<12 |
E | x≥12 |
A.18户
B.20户
C.22户
D.24户
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. (计算方差的公式:s2= [ ])