题目内容
【题目】哈市某专卖店销售某品牌服装,该服装进价为每件80元,当每件服装售价为240元时,月销售量为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现,当销售单价每降价10元,月销量就增加20件.设每件服装售价为x元,该专卖店的月销售量为y件.
(1)求y与x的关系式;
(2)在某月进货时,该专卖店进货款不超过18000元,售价定为多少元可使月利润达到33000元?
【答案】(1)y=﹣2x+680;(2)销售单价应定为230元
【解析】
(1)直接利用月销量=200+×20得到函数关系式;
(2)根据利润=销售量×(单价﹣成本)列出方程并解答.
解:(1)依题意得:y=200+×20=﹣2x+680.
(2)由题意,得(x﹣80)(﹣2x+680)=33000
整理,得x2﹣420x+43700=0,
即(x﹣190)(x﹣230)=0,
x1=190,x2=230,
当x=190时,成本=80×(680﹣2×190)=24000>18000不符合要求,舍去.
当x=230时,成本=80×(680﹣2×230)=17600<18000符合要求.
故销售单价应定为230元.
【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金 | 每台乙型收割机的租金 | |
A地区 | 1800 | 1600 |
B地区 | 1600 | 1200 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?