题目内容

【题目】如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.

(1)求证:EF与⊙O相切;
(2)若AB=6,AD=4 ,求EF的长.

【答案】
(1)

证明:连接OD,

∵AD平分∠CAB,

∴∠OAD=∠EAD.

∵OD=OA,

∴∠ODA=∠OAD.

∴∠ODA=∠EAD.

∴OD∥AE.

∵∠ODF=∠AEF=90°且D在⊙O上,

∴EF与⊙O相切.


(2)

证明:连接BD,作DG⊥AB于G,

∵AB是⊙O的直径,

∴∠ADB=90°,

∵AB=6,AD=4

∴BD= =2,

∵OD=OB=3,

设OG=x,则BG=3﹣x,

∵OD2﹣OG2=BD2﹣BG2,即32﹣x2=22﹣(3﹣x)2

解得x=

∴OG=

∴DG= =

∵AD平分∠CAB,AE⊥DE,DG⊥AB,

∴DE=DG=

∴AE= =

∵OD∥AE,

∴△ODF∽△AEF,

,即

∴EF=


【解析】(1)连接OD,由题可知,E已经是圆上一点,欲证CD为切线,只需证明∠ODF=90°即可.(2)连接BD,作DG⊥AB于G,根据勾股定理求出BD,进而根据勾股定理求得DG,根据角平分线性质求得DE=DG= ,然后根据△ODF∽△AEF,得出比例式,即可求得EF的长.
【考点精析】根据题目的已知条件,利用切线的判定定理的相关知识可以得到问题的答案,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网