题目内容
【题目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=°.
【答案】45
【解析】解:作DH⊥BC于H,如图,
∵AD∥BC,∠DAB=90°,
∴四边形ABHD为矩形,
∴BH=AD=1,AB=DH,
∴HC=BC﹣BH=2﹣1=1,
∵△ABD绕着点B逆时针旋转90°得到△EBF,
∴∠FBD=90°,BF=BD,
∴△BDF为等腰直角三角形,
∵点F刚好落在DA的延长线上,
∴BA⊥DF,
∴AB=AF=AD=1,
∴DH=1,
∴△DHC为等腰直角三角形,
∴∠C=45°.
所以答案是45°.
【考点精析】本题主要考查了旋转的性质的相关知识点,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
练习册系列答案
相关题目