题目内容
【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
【答案】(1);(2)P(0,6)
【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.
试题解析:
令一次函数中,则,
解得:,即点A的坐标为(-4,2).
∵点A(-4,2)在反比例函数的图象上,
∴k=-4×2=-8,
∴反比例函数的表达式为.
连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.
设平移后直线于x轴交于点F,则F(6,0)
设平移后的直线解析式为,
将F(6,0)代入得:b=3
∴直线CF解析式:
令3=,解得:,
∴C(-2,4)
∵A、C两点坐标分别为A(-4,2)、C(-2,4)
∴直线AC的表达式为,
此时,P点坐标为P(0,6).
点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.
【题型】解答题
【结束】
26
【题目】以四边形ABCD的边AB、AD为底边分别作等腰三角形ABF和ADE,连接EB.
(1)当四边形ABCD为正方形时(如图1),以边AB、AD为斜边分别向外侧作等腰直角三角形ABF和ADE,连接EB、FD,线段EB和FD的数量关系是 .
(2)当四边形ABCD为矩形时(如图2),以边AB、AD为斜边分别向内侧作等腰直角三角形ABF和ADE,连接EF、BD,线段EF和BD具有怎样的数量关系?请加以证明;
(3)当四边形ABCD为平行四边形时(如图3),以边AB、AD为斜边分别向平行四边形内测、外侧作等腰直角三角形ABF和ADE,且△EAD与△FBA的顶角都为α,连接EF、BD,交点为G,请用α表示出∠EGD,并说明理由.
图1 图2 图3
【答案】(1)EF=BD;(2)EF=BD;(3)
【解析】分析:(1)正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;(2)根据等腰直角三角形的性质可得,再证得∠BAD=∠FAE,即可判定△BAD∽△FAE ,根据相似三角形的性质可得,即可得;(3),先证△BFA∽△DEA,即可得,
再证得,所以△BAD∽△FAE,根据全等三角形的性质即可得,再由∠AHE=∠DHG,即可得.
详解:(1)EF=BD,
理由如下:
四边形ABCD为正方形,
∴AB=AD,
∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中, ,
∴△AFD≌△ABE,
∴EB=FD;
(2)EF=BD.
证明:∵△AFB为等腰直角三角形
∴,∠FAB=45°
同理: ,∠EAD=45° ∴∠BAD+∠FAD=∠EAD+∠DAF
即∠BAD=∠FAE
∵, ∴
∴△BAD∽△FAE ∴
即:
(3)解:
∵△AFB为等腰直角三角形,∴FB=FA,
同理:ED=EA,∴,
又∵ ,∴△BFA∽△DEA,
∴,
∴,
∴,
∴△BAD∽△FAE,
∴,
又∵∠AHE=∠DHG,
∴.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?